Conjecture + Proof = Theorem

Bob Lyons

Agenda

- Conjectures, proofs and theorems
- Contest
- Conjecture or theorem?
- Answers to the contest
- Chocolate Bar Theorem
- Win \$1,000,000 for proving a conjecture!

Theorems vs. conjectures

- Mathematicians try to prove hypotheses and discoveries using logic
- Theorems are important mathematical facts that have been proven to be true
- Conjectures are mathematical discoveries that seem to be true, but which haven't been proven

What is a proof?

- A proof demonstrates why the theorem is true
" It's a chain of logical reasoning consisting of many steps that are nearly obvious
- A proof assumes certain self-evident facts (axioms) and may build upon theorems that have been proven already
- Conjecture + Proof = Theorem

Let's prove the following

- 91 is not prime
- 7 is prime

91 is not a prime number

Proof:

- A prime number is a positive integer that is greater than 1 and that is divisible only by 1 and itself
- 91 is divisible by 13 and 7, since $13 \times 7=91$
- Therefore, 91 is not a prime number

7 is a prime number

Proof:

- 7 is divisible by only 1 and itself
- $7 \div 2=3$ R 1
$-7 \div 3=2$ R 1
- $7 \div 4=1$ R 3
- $7 \div 5=1$ R 2
- $7 \div 6=1$ R 1
- Therefore, 7 is a prime number

Contest

- Divide up into teams of four
- I'll present several math discoveries
- Some are proven theorems
- Some are unproven conjectures
- Your team must decide which are proven theorems and which are unproven conjectures
- The winning team will win prizes

1. Conjecture or theorem?

- There are infinitely many prime numbers
- That is, there is no largest prime number

2. Conjecture or theorem?

- There are an infinite number of twin primes
- Two numbers are twin primes if they are both prime numbers and they differ by 2
- The following are twin primes:
- 3 and 5
- 5 and 7
- 11 and 13
- Try to find another pair of twin primes

3. Conjecture or theorem?

- Every even number greater than 2 is the sum of two prime numbers
- For example:
- $4=2+2$
- $6=3+3$
- $24=11+13$
- $100=17+83$
- Find 2 prime numbers whose sum is 30

4. Conjecture or theorem?

- Every positive integer is the sum of four squares
- Examples:
- $10=2^{2}+2^{2}+1^{2}+1^{2}=4+4+1+1$
- $16=4^{2}+0^{2}+0^{2}+0^{2}=16+0+0+0$
- $50=6^{2}+3^{2}+2^{2}+1^{2}=36+9+4+1$
- $100=9^{2}+3^{2}+3^{2}+1^{2}=81+9+9+1$
- Find 4 squares whose sum is 21

5. Collatz Sequences

- Choose a positive integer and create a list of integers as follows:
- If the current number is even, then divide it in half to get the next number
- If the current number is odd, then multiply it by 3 and add 1 to get the next number

5. Example Collatz Sequences

- $11,34,17,52,26,13,40,20,10,5,16$,
- $15,46,23,70,35,106,53,160,80,40$, 20, 10, 5, ...
- 321, 964, 482, 241, 724, 362, 181, 544, $272,136,68,34,17,52,26,13,40,20$, $10,5,16,8, \ldots$

5. Conjecture or theorem?

- Every Collatz Sequence ends with the numbers "4, 2, 1," repeating
' 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ...
- 321, 964, 482, 241, 724, 362, 181, 544, $272,136,68,34,17,52,26,13,40,20,10$, $5,16,8,4,2,1,4,2,1, \ldots$
- What's the sequence that starts with 6 ?

6. Fibonacci numbers

- $0,1,1,2,3,5,8,13,21,34,55,89, \ldots$
- Each number in the sequence is equal to the sum of the previous two numbers
- $1=1+0$
- $2=1+1$
- $3=2+1$
- $5=3+2$
- $8=5+3$

6. Conjecture or theorem?

- Every positive integer is the sum of two or more different Fibonacci numbers
- For example:

$$
\begin{aligned}
& 10=8+2 \\
& =50=34+13+3 \\
& =100=89+8+3
\end{aligned}
$$

- Find the distinct Fibonacci numbers whose sum is 33 . Here are the Fibonacci numbers:
- $0,1,1,2,3,5,8,13,21,34,55,89$, ...

7. Conjecture or theorem?

- Every map can be colored using 4 colors
* No two adjacent regions have the same color
- Adjacent regions share a border, not just a point
- First discussed in 1852 by Francis Guthrie
- He noticed that only 4 colors were needed to color a map of the counties of England

7. Conjecture or theorem?

- The following map can be colored with 4 colors, but not with 3 colors

7. Conjecture or theorem?

- Try to color this map with 4 colors

End of contest

- Please hand in your answers

1. Infinitude of Primes Theorem

- Euclid's Second Theorem
- The number of primes is infinite
- Proved by Euclid of Alexandria over 2,300 years ago!
- The proof is fairly simple
- I learned it in high school

2. Twin Prime Conjecture

- There are infinitely many twin primes
- First proposed by Euclid
- For over 2,300 years, mathematicians have been unable to prove it
- Largest twin primes (so far):
$16,869,987,339,975 \times 2{ }^{171,960}+1$ and $16,869,987,339,975 \times 2^{171,960}+3$

3. The Goldbach Conjecture

- Every even number greater than 2 is the sum of two prime numbers
- Proposed by Goldbach and Euler in 1742
- Euler, one of the greatest mathematicians of all time, could not prove it
- Computers have verified the conjecture for numbers up to 200,000,000,000,000,000

4. Four-Square Theorem

- Every positive integer is the sum of four squares
- The ancient Greek mathematician Diophantus knew about it
- Proven by Joseph Louis Lagrange in 1770

5. Collatz Conjecture

- All Collatz sequences end with 4, 2, 1, repeating forever
- First proposed by Lothar Collatz in 1937
- Not yet proven
- The conjecture is true for all start values up to $27,021,597,764,222,976$
- Checked by computer

6. Zeckendorf's Theorem

- The theorem implies that every positive integer is the sum of two or more different Fibonacci numbers
- Edouard Zeckendorf was an amateur mathematician
- He proved the theorem in 1939

7. Four Color Theorem

- Every map can be colored with 4 colors
- Proved by Kenneth Appel and Wolfgang Haken in 1976
- The proof required a super computer
- The computer spent 1200 hours checking many specific maps
- It took many years to check the proof for errors

Summary

1. Infinitude of Primes Theorem
2. Twin Prime Conjecture
3. Goldbach's Conjecture
4. Lagrange's Four-Square Theorem
5. Collatz Conjecture
6. Zeckendorf's Theorem
7. Four Color Theorem

Chocolate Bar Theorem

- If a chocolate bar consists of N squares, then it takes N -1 splits to break it up into the N squares
- For example, if the bar consists of 20 squares, then 19 splits are required to break up the bar into the 20 squares
- Each split breaks one piece along a horizontal or vertical line

Chocolate Bar Theorem

- For example, this chocolate bar consists of 21 squares
- Therefore, 20 splits are required to break up the bar into the 21 squares

Chocolate Bar Theorem

- Proof:
- Each time you split a piece, the total number of pieces increases by 1
- After the first split, you have two pieces
- After the second split, you have three pieces
- After N-1 splits, you have N pieces
- Therefore, if the bar consists of N squares, then $\mathrm{N}-1$ splits are required

Chocolate Bar Theorem

- Let's test the theorem with real chocolate bars
- Yummy!

Win \$1,000,000 for proving a conjecture

- In May 2000, the Clay Mathematics Institute offered seven \$1,000,000 prizes for the solutions to each of seven unsolved problems in mathematics
- Most of the these Millennium Problems are conjectures
- One has been proven recently!

References

" Ask Dr. Math: http://mathforum.org/dr.math/
" Proofs: http://mathforum.org/dr.math/faq/ faq.proof.html

- Conjectures: http://en.wikipedia.org/wiki/Conjecture
- Lagrange's four-square theorem: http://en.wikipedia.org/wiki/Lagrange's_foursquare_theorem
- Ancient Greek Mathematicians: http://encarta.msn.com/encyclopedia_761578291_6/ Mathematics.html

References

" No largest prime: http://mathforum.org/library/ drmath/view/57092.html

- Fibonacci Numbers: http://en.wikipedia.org/wiki/Fibonacci_number
- Zeckendorf's Theorem: http://en.wikipedia.org/wiki/ Zeckendorf's_theorem
- Breaking chocolate bars: http://www.cut-the-knot.org/proofs/chocolad.shtml
- Millennium Problems: http://www.claymath.org/ millennium/

